Albumin inhibits the insulin-mediated ACE2 increase in cultured podocytes.

نویسندگان

  • Eva Márquez
  • Marta Riera
  • Julio Pascual
  • María José Soler
چکیده

Podocytes are key cells in the glomerular filtration barrier with a major role in the development of diabetic nephropathy. Podocytes are insulin-sensitive cells and have a functionally active local renin-angiotensin system. The presence and activity of angiotensin-converting enzyme 2 (ACE2), the main role of which is cleaving profibrotic and proinflammatory angiotensin-II into angiotensin-(1-7), have been demonstrated in podocytes. Conditionally immortalized mouse podocytes were cultured with insulin in the presence and absence of albumin. We found that insulin increases ACE2 gene and protein expression, by real-time PCR and Western blotting, respectively, and enzymatic activity within the podocyte and these increases were maintained over time. Furthermore, insulin favored an "anti-angiotensin II" regarding ACE/ACE2 gene expression balance and decreased fibronectin gene expression as a marker of fibrosis in the podocytes, all studied by real-time PCR. Similarly, insulin incubation seemed to protect podocytes from cell death, studied by a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. However, all these effects disappeared in the presence of albumin, which may mimic albuminuria, a main feature of DN pathophysiology. Our results suggest that modulation of renin-angiotensin system balance, fibrosis, and apoptosis by insulin in the podocyte may be an important factor in preventing the development and progression of diabetic kidney disease, but the presence of albuminuria seems to block these beneficial effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Insulin on ACE2 Activity and Kidney Function in the Non-Obese Diabetic Mouse

We studied the non-obese diabetic (NOD) mice model because it develops autoimmune diabetes that resembles human type 1 diabetes. In diabetic mice, urinary albumin excretion (UAE) was ten-fold increased at an "early stage" of diabetes, and twenty-fold increased at a "later stage" (21 and 40 days, respectively after diabetes diagnosis) as compared to non-obese resistant controls. In NOD Diabetic ...

متن کامل

Podocyte-specific overexpression of human angiotensin-converting enzyme 2 attenuates diabetic nephropathy in mice

Angiotensin-converting enzyme 2 (ACE2) degrades angiotensin II to angiotensin-(1-7) and is expressed in podocytes. Here we overexpressed ACE2 in podocytes in experimental diabetic nephropathy using transgenic methods where a nephrin promoter drove the expression of human ACE2. Glomeruli from these mice had significantly increased mRNA, protein, and activity of ACE2 compared to wild-type mice. M...

متن کامل

Shank2 Regulates Renal Albumin Endocytosis

Albuminuria is a strong and independent predictor of kidney disease progression but the mechanisms of albumin handling by the kidney remain to be fully defined. Previous studies have shown that podocytes endocytose albumin. Here we demonstrate that Shank2, a large scaffolding protein originally identified at the neuronal postsynaptic density, is expressed in podocytes in vivo and in vitro and p...

متن کامل

Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice.

Angiotensin-converting enzyme 2 (ACE2) is located in several tissues and is highly expressed in renal proximal tubules, where it degrades the vasoconstrictor angiotensin II (ANG II) to ANG-(1-7). Accumulating evidence supports protective roles of ACE2 in several disease states, including diabetic nephropathy. A disintegrin and metalloprotease (ADAM) 17 is involved in the shedding of several tra...

متن کامل

Extracellular purines' action on glomerular albumin permeability in isolated rat glomeruli: insights into the pathogenesis of albuminuria.

Purinoceptors (adrengeric receptors and P2 receptors) are expressed on the cellular components of the glomerular filtration barrier, and their activation may affect glomerular permeability to albumin, which may ultimately lead to albuminuria, a well-established risk factor for the progression of chronic kidney disease and development of cardiovascular diseases. We investigated the mechanisms un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 306 11  شماره 

صفحات  -

تاریخ انتشار 2014